
## **Summer Assignment for Calc III (M215)**

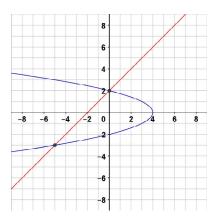
Set up the definite integral that gives the area of the region between the curves.

1. 
$$y_1 = x^2 + 2x + 1$$
,  $y_2 = 2x + 5$ 

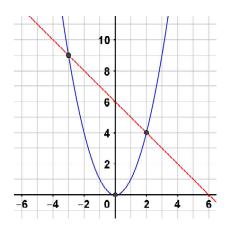


2. 
$$y_1 = 3(x^3 - x), \quad y_2 = 0$$




Find a set of parametric equations for the line or conic.

- 3. Line passes through (1, 4) and (5, -2)
- 4. Circle: center (-6, 2); radius: 4.


Find the area of the region between the two functions by integrating

- (a) with respect to x and
- (b) with respect to y.
- (c) Compare your results. Which method is simpler?

5. 
$$x = 4 - y^2$$
,  $x = y - 2$ 



6. 
$$y = x^2$$
,  $y = 6 - x$ 



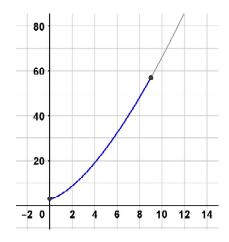
Find the volumes of the solids generated by revolving the region bounded by the graphs of the equations about the given lines.

7. 
$$y = 2x^2$$
,  $y = 0$ ,  $x = 2$ 

- (a) the y-axis
- (b) the x-axis
- (a) the line y = 8
- (a) the line x = 2

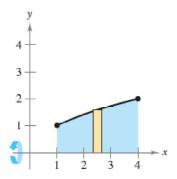
Sketch the region bounded by the graphs of the algebraic functions and find the area of the region.

8. 
$$y = -x^3 + 3$$
,  $y = x$ ,  $x = -1$ ,  $x = 1$ 


9. 
$$f(x) = -x^2 + 4x + 1$$
,  $g(x) = x + 1$ 

Set up an integral for the length of the curve.

10. 
$$y = x^4$$
,  $0 \le x \le 1$ 


Find the arc length of the graph of the function over the indicated interval. You can use a calculator to calculate the final value - but you need to show all your work (i.e. don't evaluate the integral using the calculator)

11. 
$$y = 2x^{\frac{3}{2}} + 3$$
  $0 \le x \le 9$ 



Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

12. 
$$y = \sqrt{x}$$



Plot the point in polar coordinates and find the corresponding rectangular coordinates for the point.

13. 
$$\left(8, \frac{\pi}{2}\right)$$

14. 
$$\left(-4, \frac{-3\pi}{4}\right)$$

Convert the rectangular equation to polar form and sketch its graph.

15. 
$$x^2 - y^2 = 9$$

16. 
$$3x - y + 2 = 0$$

Convert the polar equation to rectangular form and sketch its graph.

17. 
$$r = 3 \sin \theta$$

18. 
$$\theta = \frac{5\pi}{6}$$

19. Find the area of the region shared by the circle r = 5 and the cardioid  $r = 5(1 + \sin \theta)$